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MARIA G. BARTOLINI BUSSI AND MICHELA MASCHIETTO 

MACHINES AS TOOLS IN TEACHER EDUCATION1  

The aim  of this chapter is to present some issues concerning teacher education, at 
both primary and secondary school levels, drawing on the activity of the 
Laboratory of Mathematical Machines at the Department of Mathematics of the 
University of Modena and Reggio Emilia (MMLab: www.mmlab.unimore.it). After 
having defined what are mathematical machines (geometrical and arithmetical 
machines, as well), we shall illustrate shortly the theoretical framework of semiotic 
mediation after Vygotsky, where the activity for prospective and practising school 
teachers is situated. We shall offer two examples. The first concerns arithmetical 
machines related to the meaning of place value in primary school and the second 
geometrical machines related to the meaning of axial symmetry in secondary 
school. Activity takes place in small size (25-30 students) laboratory settings for 
prospective and practising school teachers, according to the Italian standards for 
teacher education and to the implementation realized at the Faculty of Education 
of the University of Modena and Reggio Emilia. 

INTRODUCTION 

The Laboratory of Mathematical Machines of the University of Modena and 
Reggio Emilia is a well known research centre for the teaching and learning of 
mathematics by means of instruments (Maschietto, 2005; Larousserie, 2005). The 
name comes from the most important collection of the Laboratory, containing more 
than 200 working reconstructions (based on the original sources) of many 
mathematical instruments taken from the history of geometry. Briefly,  

a mathematical (or, better, a geometrical) machine is a tool that forces a point 
to follow a trajectory or to be transformed according to a given law.  

 Examples are the standard compass (that forces a point to go on a circular 
trajectory, see below) and the Dürer glass used as a perspectograph (that transform 
a point into its perspective image on a glass from a given point). However, the 
activities in the MMLab are not limited to the above kind of instruments. Also 
activities with physical machines concerning arithmetics are carried out. For 
brevity,  we  shall  call  them  “arithmetical  machines”.  Briefly, 

an arithmetical machine is a tool that allows the user to perform at least one 
of the following actions: counting; making calculations; representing 
numbers. 

http://www.mmlab.unimore.it/
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 Tools from ICT (Information and Communication Technologies, e.g. 
calculators, dynamic software) are available and frequently used in the MMLab, 
but, in this chapter they will not be considered. Rather, we shall focus on artefacts 
which, because of their very origin and the concrete constructions, foster both 
historical-cultural and manipulative approaches to mathematics.  

Using effectively such artefacts in the mathematics classroom is a true 
challenges for teacher, as specific professional competences, which cannot be 
taken for granted, are required,. The complexity of these competences is consistent 
with the multidimensional feature of mathematical knowledge for teaching  (Ball et 
al., submitted).  

In all the research studies carried out by the team of the MMLab, at least three 
analytical components are present:  

– an epistemological component, with attention to mathematical meaning;  
– a didactical component, with attention to the classroom processes; 
– a cognitive component, with attention to processes of learning (Arzarello 
and Bartolini Bussi, 1998).  
This approach for activity in primary and secondary classrooms is carried out 

also in prospective  and practising  teacher education that takes place within the 
Faculty of Education at Reggio Emilia. According to the Italian governmental 
regulations issued in 1998, teacher education is organized around three main kinds 
of activities: lectures (for large groups of prospective teachers, up to 100  and 
more), in-school apprenticeship (individual participation in standard classroom 
activities, under the supervision of expert teachers) and laboratories.  
 The activities described in this chapter take place in the laboratory settings, 
which are the same size as a standard classroom (25-30 participants). In most 
mathematical laboratories, in our faculty, prospective teachers explore geometrical 
and arithmetical machines2. At the beginning, the teacher educator acts as the 
classroom teacher, whilst the prospective teachers act as the students: usually they 
are given tasks that are similar to the ones that could be used with primary and 
secondary students. Later metacognitive activity takes place, to make explicit the 
links between the mathematical activity, as experienced by the prospective 
teachers, and the theoretical framework. In this way the very tasks acquire a 
paradigmatic feature that allows the prospective teachers to give sense to the 
theoretical framework. We shall come back again to the differences between the 
activity with students and with prospective teachers in the conclusions. 
 In the following section, some elements of the theoretical framework will be 
summarized very briefly, drawing on the chapter by Bartolini Bussi and Mariotti 
(in press), before discussing some cases. In the mentioned framework, the artefacts 
of MMLab are interpreted as tools of semiotic mediation for the construction of 
mathematical meanings   under   the   teacher’s   guide. A Vygotskian framework is 
particularly suitable,  because  of  the  importance  of  the  teacher’s  role  and  the  focus  
on both the concreteness (that requires direct manipulation) and on the explicit 
historical reference of the artefacts.  
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THEORETICAL FRAMEWORK: AN OUTLINE. 

Artefacts 

The word artefact is generally used in a very general way and encompasses oral 
and written forms of language, texts, physical tools used in the history of arithmetic 
(e.g., abaci and mechanical calculators) and geometry (e.g., straightedge and 
compass), tools from ICT, manipulatives, and so on. According to Rabardel 
(1995), an artefact is a material or symbolic object per se. The instrument (to be 
distinguished from the artefact) is defined as a hybrid entity made up of both 
artefact-type components and schematic components that are called utilization 
schemes. The utilization schemes are progressively elaborated when an artefact is 
used to accomplish a particular task; thus the instrument is a construction of an 
individual3. It has a psychological character and it is strictly related to the context 
within which it originates and its development occurs. The elaboration and 
evolution of the instruments is a long and complex process that Rabardel names 
instrumental genesis. Instrumental genesis can be articulated into two coordinated 
processes: instrumentalisation, concerning the emergence and the evolution of the 
different components of the artefact, drawing on the progressive recognition of its 
potentialities and constraints; instrumentation, concerning the emergence and 
development of the utilization schemes. “In   the   instrumentation   process,   the  
subject develops, while in the instrumentalization process, it is the  artefact that 
evolves”   (Rabardel, 1995, p. 12)4. In the following, we shall illustrate how both 
processes, that have been studied by Rabardel in cognitive ergonomy, apply to 
classroom activity.  
 The artefacts used in the MMLab and selected for this chapter are machines 
concerning geometry and arithmetic. Unlike some artefacts from ICT, they are to 
be concretely handled; they require motor abilities; they put up resistance to 
motion; and they need time to be explored. One might observe that using concrete 
manipulatives to teach mathematics is a long-established educational strategy, at 
least with young learners, based on theories claiming that children need concrete 
referents to develop abstract mathematics concepts (Piaget, 1966). This assumption 
has been often supported by the implicit or explicit claim that educational 
manipulatives are “transparent” for mathematical meanings (see also Chapter 7, 
this volume). We take the distance from this view in relation to the following two 
different issues: 

– The  learners’  age: we claim that concrete manipulatives are to be used not 
only with children but also with older  students, up to the tertiary level; we shall 
offer examples showing that some very sophisticated mathematical processes 
(e.g. the elaboration of definitions and the construction of proofs) can take 
advantage of a guided manipulation of concrete artefacts at all ages; 
– The transparency of the artefact: we claim that artefacts are not 
transparent, rather they “become efficient, relevant, and transparent through 
their use in specific activities and in relation to the transformations that they 
undergo in the hands of users” (Meira, 1998). To Meira, transparency (if any) is 
not an inherent (objective) feature of the tool, but emerges through the very use 
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of the tool itself. The artefacts used in the MMLab seem “transparent”, as unlike 
the tools of the ICT, the functioning is completely accessible and there is no 
hidden engine or software inside. Yet, in spite of this functioning transparency, 
they are not “transparent” where mathematical meaning is concerned. 

 Cultural artefacts play an essential role in the Vygotskian approach. Vygotsky 
pointed out that, in the practical sphere, human beings use technological or 
concrete tools, reaching achievements that would otherwise have remained out of 
reach. In mental activities, human beings reach higher levels through mediation by 
artificial stimuli (signs or semiotic tools), that are referred to as psychological 
tools. In most of the further literature signs have been interpreted as linguistic 
signs, due to the greater importance attached by Vygotsky to language. Yet, 
Vygotsky (1981) himself suggested other examples among which there are various 
systems for counting and mechanical drawings.  

Example: the Compass 

A simple, yet meaningful example for mechanical drawing, is given by the tool 
evoked by Hero in his mechanical dynamic procedural definition of circle, as  

the figure described when a straight line, always remaining in one plane, 
moves about one extremity as a fixed point until it returns to its first position 
(Heath, 1908, p.184). 

 This tool (Figure 1) is a different version of the pair of compasses (Figure 2). In 
the former, the straight line is materialized by the piece of the bar (OC) between 
the two hands, whilst in the latter is given by the (not visible) base (OP) of the 
triangle formed by the legs. 

 

 

 
Figure 1. Beam compass  Figure 2. Pair of compasses 

 As technical tools, both a beam compass and a pair of compasses (we shall use 
in both cases the word compass, for brevity) are used to produce round shapes: the 
ways of handling, evoked in the above figures, are different and are neither 
spontaneous nor simple, especially for young pupils. As a psychological tool either 
has the potentiality to evoke the peculiar feature of circles (i.e., the constancy of 
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the radius) and to create the link with the geometrical static relational definition of 
Euclid: 

A circle is a plane figure contained by one line such that all the straight lines 
falling upon it from one point among those lying within the figure are equal 
to one another (Heath, 1908, p. 183). 

 As a technical tool it is externally oriented; as a psychological tool it is 
internally oriented (Vygotsky, 1978, p.55). A compass may be used to produce a 
solution of the following construction problem, from Euclid’s   elements Book 1 
(see, Heath, 1908 p.241). 

To construct an equilateral triangle on a given finite straight line.  

 In the proof, no compass is mentioned. Rather, among others, the third postulate 
is recalled:  

Let the following be postulated: To describe a circle with any centre and 
radius.  

In other words, what is important is not the very drawing of the circle carried out 
with some artefact, but the possibility to describe it and to use its peculiar 
properties. The original proof follows. 

Proposition 1. 
To construct an equilateral triangle on a given finite straight line.  
Let AB be the given finite straight line.  
Thus it is required to construct an equilateral triangle on the straight line AB. 
With centre A and distance AB, let  the circle BCD be described [post. 3]; 
Again, with centre B and distance BA let the circle ACE be described [post. 
3]. 
And from the point C in which the circles cut one another, to the points A, B, 
let the straight lines CA, CB be joined [post. 1]. 
Now, since the point A is the centre of the circle CDB, AC is equal to AB 
[def. 15]. 
Again, since the point B is the centre of the circle CAE,  BC is equal to BA 
[def. 15]. 
But CA was also  proved equal to AB, therefore each of the straight lines CA 
and BC is equal to AB. 
And things which equal the same thing also equalto  one another [C.N. 1]. 
Therefore CA is also equal to BC. 
Therefore the three straight lines CA, AB, and BC are  equal to  one another. 
Therefore the triangle ABC is equilateral, and it has been constructed on the 
given finite straight line AB. 

(Being) what it was required to do5. 
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Figure  3.  Euclid’s  Proposition  1:  The drawing 

 In technical drawing lessons, secondary school students are taught a solution of 
the same problem (Figure  4), where two small signs are traced by means of the 
compass to find the third vertex of the triangle. They might be able to carry out the 
concrete operations with the compass and to describe it carefully (how), without 
being able to give any geometrical justification (why); when this happens, the 
students are using the compass only as a technical tool to produce a drawing, but 
not (yet) as a psychological tool, because they are not (yet) aware that the solution 
draws on the property of circle to be the locus of points at a given distance from a 
given point.   

 

Figure 4. The construction of an equilateral triangle in technical drawing handbooks. 

 It might be considered only a first step in the construction of the meaning of 
circle, as soon as the students appropriate this meaning the above construction 
problem is not challenging any more and becomes a trivial exercise. The above 
discussion suggests a meaningful task to be introduced into teacher education, 
concerning the solution of a particular construction problem. 

A task in teacher education. On a standard white (not squared) sheet of paper, two 
circles are drawn: the radii are 3 cm and 2 cm and the distance between the two 
centres is 7 cm. The problem is:  

Draw a circle with a radius of 4 cm tangent to the given circles. You can use 
instruments. Explain clearly the method so that others can use it. Explain 
carefully why the method works 
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Figure 5. The drawing of the task 

 The task is twofold as the learner is explicitly asked to produce both a correct 
solution (how) and a geometrical justification of the solution (why). The artefact 
“compass” is evoked by the hint to use instruments: it has the potential of 
suggesting both a solution and a justification, that is, on the one hand, functionally 
linked to the task and, on the other hand, explicitly related to mathematics 
knowledge. However this potential is not trivial to be exploited by learners, 
regardless of age and expected school education . We have tested this problem with 
both young students from grade 5 (Bartolini Bussi et al. 2007) and prospective 
teachers, who have enrolled in the college for primary teacher education. In the 
latter case, one might expect solutions referring to argumentation (as prospective 
teachers have studied some geometry in secondary school); yet the early solutions 
given by undergraduates are similar to the solutions given by children. In most 
cases the compass is used only to draw the new circle (with a 4 cm radius), and not 
to find the centre of that circle. Rather, the centre is found by trial and error, 
evidence is given by the many small holes that appear by transparency in the sheet 
of paper. Again, the compass is used as a technical tool and not as a psychological 
tool. The very formulation of the task (how and why) allows the teacher educator to 
raise some issues in the discussion of the solutions. When the solution is found, 
even by trial and error, it is easily recognized that the problem is equivalent to the 
problem of finding a triangle with given sides. Hence the position of C may be 
calculated by intersecting two circles (with radii (3 + 4) cm and (2 + 4) cm 
respectively, see the dotted circles in Figure 6). The justification for  this solution 
(why) requires the student to call into play some particular features: the Euclidean 
definition of circle; the equality of the distance between the two centres of two 
(externally) tangent circles to the sum of the radii. 
 When   either   the   primary   school   pupils   (under   the   teacher’s   guidance) or the 
prospective teachers (under the  teacher  educator’s  guidance) become aware of the 
relationships between the definition of circle, the function of this definition in the 
solution of the problem and the use of the compass, the process of transformation 
of the compass into a psychological tool is started. The justification of the method 
assumes the form of a true mathematical proof, with explicit reference to the 
definition and to the property of tangent circles. 
 This process is neither spontaneous nor short. It is the responsibility of either the 
teacher or the teacher educator to guide this process, fostering the transformation of 
the   students’   texts   (situated in the practical activity carried out with the artefact) 
into mathematical texts.  
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Figure 6. A solution by pair of compasses. 

Semiotic Mediation 

The process described above for the compass is similar to the process observed for 
other artefacts (Bartolini Bussi and Mariotti, in press) which can be linked, on the 
one hand, to meaningful tasks and, on the other hand, to some pieces of 
mathematics knowledge. In this paragraph  we  shall  use  the  general  term  “teacher”  
to mean both the school teacher and the teacher educator and, similarly, the term 
“student”   to  mean   both   the   pupil   and   the   prospective   teacher.   The   teacher,   after  
having designed a meaningful task which refers to mathematics knowledge and 
may be solved by means of the compass (the left side of the diagram of the Figure 
6), has the responsibility of observing and analysing the situated texts produced by 
the students and of designing and implementing their transformation into 
mathematical texts (the right part of the diagram). 
 The  word  “text”  is  used  in  a  broad  sense,  to  include  not  only  written  texts,  but  
also gestures and gazes (that sometimes cannot be easily transformed into words by 
the students), drawings and whatever sign is used to make sense of and to 
communicate  the  procedure.  The  teacher’s  role  in  this  process  may  be  described  as  
follows: he/she uses the artefact as a tool of semiotic mediation. For a detailed 
presentation of semiotic mediation in accordance with a Vygotskian approach, the 
reader might refer to Bartolini Bussi and  Mariotti (in press). In short, one might 
say that the artefact is drawn by the teacher into the solving process both as a 
technical tool and as a psychological tool. In fact, on the one hand, it allows the 
user (either the teacher or the student) to produce a solution, and, on the other 
hand, it may evoke the cultural elaborations that are deposited on it from the time 
of Euclid (e. g., the peculiar features of circle). Hence the utilization schemes of 
students evolve and the they construct the meaning of circle as a locus of points in 
the same plane, equidistant from a given point, to the extent to be able to mobilize 
this piece of knowledge in problem solving. 
 In the Figure 7, the epistemological, the didactical and the cognitive components 
are articulated with each other. The cognitive component concerns the higher 
triangle  “  task  – artefact – situated  texts”; it is an evolutionary component, because, 
during time, the process of internalization in the zone of proximal development, 
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enriches   pupils’   cognitive   processes   and   changes   the   produced   texts.   The  
epistemological component concerns   the   left   triangle   “task   - mathematics 
knowledge – mathematical   texts”.   The   didactical component concerns the right 
triangle   “task,   situated   texts,   mathematical   texts”, where teaching is in the 
foreground. In the last two a crucial function is played by the artefact, which, in 
this scheme, has been put in the centre.  

 

Figure 7. Semiotic mediation 

 In the following sections, other examples will be discussed. All the machines are 
taken from case studies developed with primary or secondary school students, 
before being applied to teacher education. The differences between classroom and 
teacher education settings will be addressed in the conclusions. 

PRIMARY SCHOOL: PLACE VALUE FOR NATURAL NUMBERS IN BASE TEN 

The Object to be Mediated 

The representation of numbers is an immense field of research from the historical 
perspective (Menninger, 1958), from the anthropological perspective (Crump, 
1992), and from the cognitive perspective (Tolchinsky, 2003). From a didactical 
perspective, the manipulation of written numbers and of operation algorithms is a 
general requirement in all the school systems, at least from primary school level 
on. The object to be mediated, in this case, is the place value of digits: this is an 
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overarching meaning that is related to other meanings (e.g. one-to-one 
correspondence; numbers as operators) which will be mentioned below. 

The Network of Artefacts 

The worldwide interest in this topic and the age of the pupils involved has fostered 
the   production   of   many   manipulatives   (“arithmetical   machines”), which are still 
merchandised for and used in primary schools. We have selected a network of 
artefacts, which are documented in the history of mathematics. We shall briefly 
describe them below, before analysing the related instrumentalisation and 
instrumentation processes. We use the term network of artefacts to mean that no 
individual artefact is sufficient to form the meaning of place value to the extent of 
constructing the arithmetic operations and algorithms; rather it is the very system 
of  them  that  can  form  this  meaning  in  the  plane  of  user’s  consciousness,   together  
with the awareness of the different features of each artefact. 
Counting sticks (dating back to ancient China) are thin bamboo or plastic sticks: 
the sticks are counted, grouped and bundled (and tied with ribbons or rubber 
bands) into tens for counting up to hundred; ten-bundles are grouped and bundled 
into hundreds and so on . 

 

Figure 8. Counting sticks 

The spike abacus consists of 3 spikes and 27 beads (or more). Each spike 
represents a particular position of a digit and can have a maximum of 9 beads. 
Another version (dating back to the Roman age) has no spike but grooves (the 
grooved abacus), where pebbles or other counters to represent numbers are placed.  
The pascaline6 is a mechanical calculator (see Figure 10), with a gear train 
(Maschietto and Ferri, in press). When the lower right wheel has turned a complete 
rotation, the upper right wheel makes the central wheel to go one step ahead. The 
same happens when the central wheel has turned a complete rotation: the upper left 
wheel makes the lower left wheel to go one step ahead. Digits from 0 to 9 are 
written on the lower wheels. The three small triangles on the bottom side point at a 
digit each, so that every 3 digit number is represented by the 3 pointed digits. The 
functioning is similar to the one of old mechanical odometers. 
 The above artefacts are modern reconstructions of traditional artefacts 
(Menninger, 1958); most were used for reckoning also before the place value of 
digits was established in writing. The explicit historical dimension differentiates 
them from other artefacts, such as the multibase blocks (Sriraman and Lesh, 2007) 
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and the ICT tools. The teacher may benefit from introducing an historical discourse 
in the mathematics classroom, with even recourse to selected historical sources, to 
introduce the pupils into the flow of mathematics culture. This additional potential 
for the construction of mathematical meanings will not be explored in this chapter. 
 

  

Figure 9. A spike (left) and a grooved (right) abacus 

 

Figure 10.  The  pascaline  “zero+1” 

Meanings  

It is beyond the scope of this chapter to analyse in detail the mathematical 
meanings potentially attached to the above artefacts (Bartolini Bussi and Mariotti, 
in press; Bartolini Bussi and Boni, submitted). In short: 

 One-to-one correspondence is in the foreground for the counting sticks 
and abaci (although for the spike or grooved abaci, it works only for a very 
limited number of beads, i.e., 9 in the base ten representation, afterwards, 
conventions about grouping, composing and exchange need to be used). 

 Grouping i.e. composing (groups of ten )is in the foreground for the 
counting sticks and abaci. 
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 Number symbols are written only on the pascaline. In the shift from 
counting sticks and abaci to written representations of numbers, zero 
appears as a place holder, whilst in the pascaline zero is rather a label. 

 The generation of the written number sequence is in the foreground in the 
pascaline. It is generated   by   iterating   the   function   “+1” concretized by 
one-tooth clockwise rotation of the right wheel. This is important when 
addition is at stake. With pascaline, the function of the two addenda is not 
symmetrical (the second one is an operator on the first one), whilst with 
counting sticks and abaci, the addition works as a binary operation. The 
above differences justify why it is not only better but necessary to refer to 
a network of artefacts rather than to a sole artefact: their complementarity 
is meaningful and suggests metacognitive tasks aimed at comparing their 
potential. 

Instrumentalization   

The difference between the artefacts (in spite of the similarity of meanings) makes 
this phase very important. Before the emergence of the evolution of the different 
components of the artefact, the given artefact is in the foreground. The quoted 
artefacts have some peculiar features: they consist of different parts with 
relationships with each other. A very simple example of instrumentalization is 
described by Bartolini Bussi and Boni (2003), concerning the spike abacus. In a 
mathematical discussion with second  graders (7 year olds) about the function of 
abacus, the pupils had in front of them their personal abacus with four wires. The 
need for representing numbers beyond 9999 suggested the solution of placing side 
by side as many abaci as needed. The evolution of the artefact was progressive, 
from the juxtaposition of several abaci to the "mental" design of a new abacus with 
as many wires as needed. 

Instrumentation 

When a task is given, to be solved by means of one of the above artefacts, 
instrumentation is at work. Each individual learner constructs her/his own 
utilization schemes. A learner, while describing the process of using an artefact to 
solve a specific task, produces usually situated texts (see Figure 7), where 
metaphors and even gestures and gazes are very frequent and aim at conveying part 
of the meaning.  

Examples of Tasks for Teacher Education.  

A small group of prospective teachers was given one of the above arithmetical 
machines together with rulers for measuring, and paper and pencil. 
Instrumentalisation tasks. 
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1.  Produce a carefully written description of the artefact you have received, the 
parts, the size, the shapes, their spatial relationships, and so on. You can use words 
and drawings. 
2.  Design with everyday materials an arithmetical machine that can be used in the 
place of the one that has been offered you. 
Instrumentation tasks 
3. Represent the number 107 by means of counting sticks (or an abacus, or a 
pascaline). Describe carefully how you have realized the representation and why 
you are sure that it is correct.  
4.  Compare the utilization schemes in the above task, when different artefacts are 
into play. 
5.  Add 108 and 245 by means of counting sticks (or an abacus, or a pascaline). 
Describe carefully and justify your process. 

In the spike or grooved abaci,   before  using   the   conventional   term   “exchange”  
(ten beads with one bead in a different position, hence with a different value) or 
"compose", pupils and even prospective teachers are likely to use terms from 
everyday   language,   such   as   “pinch”,   “hide”,   “tie”,   and   similar.   Forcing   the   shift  
from these situated signs to mathematical signs is just what either the teacher or the 
teacher educator has to do in mathematical discussion to help learners construct 
mathematical meaning.  

Task 1 aims at making the prospective teachers aware of the features of the 
given artefact. This is the first step, before being involved in task 2, that influences 
them to make the artefact evolve on the basis of teaching needs (see chapter 6, this 
volume).  

Consider the “pasta”   abacus   (see   Figure 11), designed by a pair of teachers 
within a training laboratory, as a variation of the grooved abacus. They had to 
solve problems met in their classrooms (e.g., the cost of individual teaching aids, 
the noise, trouble and danger of the falling marbles, the risk that younger kids may 
swallow beads, and so on). The choice of a very special kind of pasta was carefully 
discussed: some kinds of macaroni were discarded because a line of macaroni 
could have hidden the perception of the break between two of them. The size was 
discussed   in  order   to  meet   the  need  of  pupils’   fingers.  When   the  special shape of 
“wheels”  was  chosen,  several exemplars were produced for classroom use7.  
 The tasks 3, 4 and 5, instead, concern the instrumentation process, and call into 
play the utilization schemes, that are briefly described below, in another set of 
tasks. The reader may complete the list for the other artefacts.  

Tasks: Artefacts and utilization schemes.  

Find the utilization schemes of the counting sticks, the abacus, the pascaline for 
each of the following tasks: counting and storing data; representing a given 
number. 
Task: Counting and storing data. 
Counting Sticks 
1a (one-to-one correspondence): to move a stick for each item to be counted 
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1b (counting all): to count all the sticks 
2a (bind-tens): to bind with a ribbon or a rubber band ten sticks to obtain a ten-
bunch; 
2b (bind-hundreds): to bind with a ribbon or a rubber band ten bunches of ten-
bunches etc. 
Task: Representing a given number. 
Pascaline 
3a (iteration): to repeat the operation of pushing one step clockwise the wheel A on 
the right until you reach the number. 
4a (decomposition) to push clockwise the unit wheel as many steps as needed, the 
ten wheel as many steps as needed, the hundred wheels as many steps as needed. 
 
 

Figure  11.  The  “pasta”  abacus. 

 For prospective teachers, the careful analysis of arithmetical machines is the 
first move towards the design of a long term intervention project on the place value 
of digits at the beginning of primary school. 

SECONDARY SCHOOL: SYMMETRY ABOUT AN AXIS IN THE PLANE 

The Object to be Mediated 

Symmetry is a well known property of those plane figures, which show to be 
invariant in a mirror image. In geometrical terms, symmetry about an axis is a 
plane transformation that can be defined as follows: 

Axial symmetry with axis a straight line r is a transformation that for each 
point   P   of   a   plane,   defines   a   point   P’   such   that   the   line   segment   PP’   is  
perpendicular  to  the  axis  and  the  midpoint  M  of  PP’ is on the axis. 

In procedural way, it may also be defined as follows: 

Given a line r (symmetry axis), the image of a point P (not on r) in the 
symmetry about the axis r is  a  point  P’  obtained  in  the  following  way.  Draw a 
line n perpendicular to r through P and say H the orthogonal projection of P 
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on r.  Choose  the  point  P’  on  n,  so  that  PH  =  HP’  (being  H  a  point  of  the line 
segment  PP’).  If  P  is  on  r,  P’=P. 

The second definition gives a construction that may be carried out by straightedge 
and compass.  

The Network of Artefacts 

Beside  the  pair  “straightedge  and  compass”,   there  are  other  artefacts  that  allow to 
construct   the   symmetrical   point   P’   of   a   given   point P by means of a direct 
operation8. In the following, two different artefacts will be illustrated. 

The geodreieck is a small square (popular in German speaking countries) 
realized by an isosceles right triangle, where the axis of hypotenuse is traced and 
the hypotenuse contains two symmetrical number lines with origin in the middle 
point (Figure 12). Also the other sides of the triangles are graduated in degrees, 
referring to the inner goniometer. When the axis of the hypotenuse lies on given 
symmetry axis, two points on the hypotenuse, with the same numerical label, are 
symmetrical about the symmetry axis. 

The symmetry linkage is a system of an articulated rhombus and a wooden board 
with a straight rail; two opposite vertices of the rhombus slide in the straight rail 
and the other two can carry two pens, in charge of tracing two symmetrical 
drawing in the plane of the linkage (Figure 13). It dates back to the French scientist 
C. E. Delaunay (1816–1872). 

 

 

Figure 12. Geodreieck 
Figure 13. The symmetry linkage9  
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Meanings 

All the artefacts (straightedge and compass, geodreieck and linkage) work in a 
limited part of the plane (see Figure 19 to show the case of linkage). The first 
definition above, on the contrary, applies to whichever point of the plane. Both 
geodreieck and linkage evoke the procedural definition, drawing on: 

– measuring and coordinate system (geodreieck); 
– peculiar properties of rhombuses (in the linkage, diagonals are 
perpendicular to and bisecting each other). 

Instrumentalization 

The artefacts are quite different from each other. Geodreieck is a transparent 
triangle, with printed numbers, referring to the different measures (length and angle 
width); the linkage has no number at all. Yet a perceptual resemblance appears as 
also the linkage shows the symmetry axis and some isosceles triangles. Measuring 
by means of a ruler witnesses that it is a rhombus, within the limit of the measuring 
tool sensitivity. 

Instrumentation 

We shall analyse the instrumentation process, starting from some tasks in teacher 
education. 

Tasks in teacher education. A small group of prospective teachers is given the 
above artefacts together with paper and pencil. 
1) Write   the   solution  of   the   following   task  “to  draw  a  pair  of  symmetrical  points  
about  the  axis  r”,  using  straightedge  and  compass,  the  geodreieck  and  the  linkage. 
Compare the three solutions. 
2) Write the solution   of   the   following   task   “to   draw   two   symmetrical   triangles  
about  the  axis  r”,  using  straightedge  and  compass,  the  geodreieck  and  the  linkage.  
Compare the three solutions. 
3) Write   the   solution  of   the   following   task  “to  construct   the   symmetrical   triangle  
A’B’C’  of  a  given  triangle  ABC  about  the  axis  r”,  using  straightedge  and  compass,  
the geodreieck and the linkage. Compare the three solutions. 

 To draw the symmetrical point of a given point by means of straightedge and 
compass, one must know the procedural definition of symmetry. On the contrary, 
some elements of the definition are embodied in the structure of the other artefacts: 
for instance, the choice of a rhombus for the linkage (although not necessary, see 
below Figure18) depends on the properties of rhombus. Yet, at the beginning, they 
are not transparent for the meaning of axial symmetry. With the geodreieck the 
utilization schemes may be partially guided by an intuitive idea of axial symmetry 
that may help the reading and the control of points in the two symmetrical number 
lines. Anyway, it is necessary either to have or to draw the axis on the sheet. It 
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means that the planning of the solution needs a sophisticated consciousness of what 
is being done, to avoid an improper use of the small square. With the linkage, one 
must put a sheet on the wooden plate, know the holes where to put the pencil and 
draw two points; the axis is physical (the rail in the plate). Hence, it is possible to 
use the artefact by imitation, without being aware of the function of the rail. 
 To solve the task 2 by means of the geodreieck, the most effective way is to 
draw  3   pairs   of   symmetrical   points   (P,   P’;;  Q,  Q’;;   R,   R’)   and,   later,   to   draw   the  
triangles   PQR   and   P’Q’R’.   One   must   seize   the   small   square   with   one   hand   and  
draw one point at a time with the other as shown in Figure 14. Only at the end, 
after having drawn the triangles, the symmetry appears evident. 
 On the contrary, by means of the linkage, one can draw contemporaneously and 
continuously the two triangles, putting two pens at the two free vertices and 
piloting them one with the left and the other with the right hand (see Figure 15). If 
the rail is perpendicular to the subject, as shown in Figure 15, the muscle 
perception makes clear, during the process, that the two hands are going two 
symmetrical ways: this is more evident if the user closes the eyes and pays 
attention to the hand motion only.  

 

Figure 14. Using a geodreieck.10 

In the solution of the task 3 (Figure 16) the muscle perception described above 
disappears and is substituted by the coordination of the gaze (which follows the 
triangle outline) with the motion of the hand which grips the pencil. This utilization 
scheme often requires the joint action of two students. The situation is different 
with the geodreieck. 
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Figure 15. The contemporaneous 

drawing of two symmetrical figures 
Figure 16. The drawing of a figure 

symmetrical to another one 

 To solve the task 3, the geodreieck and the linkage confront students with some 
physical constraints of the artefact (the local feature of the transformation) which 
induce peculiar utilization schemes. In fact, the given triangle ABC must be drawn 
close enough to the axis to be accessible for either the hypotenuse of the 
geodreieck or the free vertex of the rhombus. Only one pencil is sufficient in both 
cases. One of the free points of the rhombus (pointer) follows the triangle ABC 
outline, whilst the pencil, placed in the other free point (plotter) draws the triangle 
A’B’C’.   
 Generally, in both task 2 and 3, the linkage seems to force students to draw the 
whole triangle in one motion, although this solution produces always inaccurate 
drawings (Brousseau, 1986). This is frustrating for many students who would aim 
to produce precise drawings (as usually required in the geometry lessons). The 
possibility of improving the precision, by using the linkage to draw only the 
vertices and by joining them later with a ruler is not usually considered, as if the 
dynamical feature of the artefact leads necessarily the user towards a global control 
of the triangle. 

Meanings (again) 

Until now we have analysed in parallel different artefacts for axial symmetry. In 
the following we shall analyse in more details different uses of the same artefact 
(the linkage) at different school levels, then drawing from them some implications 
for teacher education. 

We have introduced the symmetry linkage in the third grade (8 year-olds) of 
primary school after some experiences with paper folding. In spite of the young 
age of the pupils, the geometrical structure of the linkage appeared both evident 
and relevant for meaning construction; the function of the axis and the properties of 
a rhombus are the main components of the meaning of axial symmetry. Yet a more 
important experiment was started during the 2006/2007 school year. A long-term 
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teaching project11 about geometrical transformations was started in grade 7 (12 
year-olds (see Figure16). The main focus was on the elaboration of a definition, 
and this required pupils to draw on the notions of perpendicularity and parallelism. 
 This experiment was useful also to design the tasks for teacher education. In the 
laboratory setting of teacher education, prospective teachers are supposed to have 
learnt some definition of axial symmetry in secondary school: hence, the focus is 
on the revisitation of the definition and on the justification (why) of the linkage 
functioning. The working sessions are usually split into two parts:  

– small group work on the linkage, by means of a working sheet, and  
– collective work on the solutions for the given tasks. 

Anothe Task in Teacher Education.  

A small group of prospective teachers is given the linkage, a working sheet with a 
drawing (see Figure 17) together with paper and pencil. 
Answer the questions, writing carefully your answers. 

lunghezza
 dell'asta

P

Q  

Figure 17. The machine drawing 

1. Describe and represent the machine (How many rigid rods make up the full 
linkage? Describe the linkage system and measure the lengths of the 
individual  rods…) 

2. In the machine some vertexes are forced to move in a certain way (bounded 
vertexes) and other vertexes are free to move on the plane. Which vertexes of 
the linkage are free? Which ones are bounded? Which are these bounds? 

3. The two vertexes that are free to move on the plane are  called:  “pointer”  and  
“plotter”.  In  your machine drawing the pointer is P and the plotter is Q. Put 
the pencil in the plotter hole and trace the drawing with the pointer [the point 
P (the pointer) traces over a given curve or shape and the point Q (the plotter) 
draws the associated curve or shape (locus) as the linkage moves]. 

 
If the pointer (point P) traces out the plotter (point Q) draws 
a  line  segment  (of  length  ……)  
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a line segment perpendicular to 
the  straight  rail  (of  length  ……) 

 

a line segment parallel to the 
straight rail (of length ……) 

 

a given triangle  
 

Compare the original figure as followed by the point P and the figure drawn 
out by the point Q – what do you notice? 

4. When the point P moves along a segment of a given figure, in a particular 
direction, does the point Q also move along the corresponding side of the 
plotted figure (locus) in the same direction sense? 

5. Given a point A, design its correspondent B with the plotter. Explain how the 
point B can be obtained from the point A (without using the articulated 
system).  

6. Try to give a definition of the final transformation produced by this linkage 
system.   

7. Choose a Cartesian axes system: if we know the coordinates of the point A, 
write down the coordinates of the point B in terms of those in A.  

8. Is it possible to use a different quadrilateral instead of the rhombus? 
9. What are the shape of the corresponding regions? 
10. Are there fixed points (i. e. points which have themselves as images)? Are 

there fixed straight lines (i. e. lines which have themselves as images)? 
 
 Questions 1 and 2 aim at highlighting the physical features of the given artefact 
(the emergence of the components in the instrumentalisation process) and offer 
elements to justify the functioning of the linkage. Moreover, question 2 concerns 
also the instrumentation process (as does question 3), as the manipulation of the 
linkage is required. Questions 3 and 4, however, aim at highlighting some features 
of transformation. The straight rail is put in evidence in the question 3 (table), as a 
reference line. Question 5 rouses the statement of an operative definition (how) of 
axial symmetry, when the linkage is not available any more (but the rail is still in 
the board). Question 6 asks for a definition.  

The following questions, 7, 8, 9, and 10, may be either used in group work or 
left for the collective discussion. In particular, question 8 prompts a process of 
conjecture production (what) and proof construction (why) (Figure 18). It may 
foster the evolution of the artefact in the instrumentalisation process, by using 
another linkage to realize the same transformation. Question 9 focuses the 
limitation of the plane regions where the linkage works (Figure 19). 

The limitation of the plane regions is an important constraint. While answering 
question 3, the students (or prospective teachers) often draw some figures that are 
too far from the rail and do not succeed in following the figure outline with the 
pointer. They erase the figure and start again. A new utilization scheme appears: 
they first look for a region which is close enough to the rail and then draw in that 
region. The questions about points and lines that have themselves as images are 
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easy to be considered, because the pointer and the plotter may be moved in order to 
go very close to each other or may be exchanged with each other. 
  

Figure 18. Not only a rhombus Figure 19. The two 
corresponding regions 

 The collective part of the session concerns the shift from the texts produced by 
the students (or the prospective teachers) towards mathematical texts (definition 
and properties of symmetry). The different answers (given by different groups) to 
the question 5 and 6 allow for the start of deeper work on definition. Prospective 
teachers often  bypass   these  questions  and  answer  only   “it   is  an  axial   symmetry”.  
Yet the question is different and concerns the elaboration of a definition. This 
process starts during group work and ends in the collective discussion, when the 
comparison between different definitions highlights linguistic issues and tacit 
assumptions12. A typical shift concerns  the  rail:  the  initial  artefact  sign  (just  “rail”)  
has  to  be  transformed  into  “symmetry  axis”,   that   is,  a   true  mathematical  sign;;  the  
fissure in the wooden board where the linkage is placed becomes, in drawings, a 
graphical sign with a very precise meaning. It is the only element of the artefact 
that is maintained in the definition of the transformation as the linkage disappears. 
Taking away the linkage (question 5) is a strategy to direct students and 
prospective teachers to focus on the peculiar features of the artefact, i.e., not so 
much the rhombus as the rail. This is not to be taken for granted. When students 
and prospective teachers are required to draw the artefact themselves, sometimes 
they draw only the rhombus (i. e., the most evident part, the element to be handled 
and moved) and not the rail, which at a first glance may appear non essential. 

CONCLUSIONS 

In this chapter we have discussed some cases of arithmetical and geometrical 
machines, showing their use in teacher education, within small size laboratories. 
The main features of the mathematical machines described in this chapter are the 
following. The artefacts are to be explored with hands and eyes, hence they exploit 
the potential of body activity that is at the core of present application of cognitive 
linguistic and neurosciences to mathematics education (Arzarello and Robutti, in 
press). The artefacts are taken from the historical phenomenology of mathematics 
(either arithmetic or geometry), hence they have already shown, in the history, the 
potential of fostering the construction of mathematical meanings, that have lived 
through the ages. The reading of historical sources might be placed beside the use 
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of such tools, to make the users aware that they are taking part in historical process 
that is not individual but collective (Otte and Seeger, 1994). 
 In the mathematics classrooms, the recourse to physical manipulatives is 
becoming less frequent and too often substituted with ICT: virtual copies of 
manipulatives are more and more easily available also for primary school (e. g., 
http://nlvm.usu.edu/en/nav/index.html). We are not against virtual objects, as a 
typical task in the Laboratory of Mathematical Machines is the modeling of  
geometrical machines within a DGE. But we claim that this is only a part of the 
story and that concrete manipulation has to find a place both in the mathematics 
classroom and in teacher education. The example of the linkage for symmetry 
clearly shows some processes (e. g., the transformation of the rail into the axis) that 
are not expected to emerge in a simulation within DGE, where all the objects are 
drawn in the same way. ICT are not surrogates for concrete objects; rather they 
have their own place in mathematics education, because of the features that are 
partly different from the ones of physical artefacts. 
 Our genuine interest in ICT is witnessed by another circumstance, the 
Vygotskian theoretical framework that we have briefly mentioned (Bartolini Bussi 
and Mariotti, in press) has proved to be effective in the  design, implementation 
and analysis of activities with different kinds of artefacts, i. e., not only classical 
technologies (as in this chapter, see also Maschietto and Martignone, submitted) 
but also ICT (Bartolini Bussi and Mariotti, submitted).  
 As we have highlighted above, the tasks for teacher education have been 
designed drawing on teaching experiments in primary and secondary school, in 
order to make prospective teachers capable of planning and running effective 
classroom activities. The teacher educator’s   role   in   the   laboratory   for prospective 
teachers is similar   to   the   teacher’s   role in the classroom, with, at least at the 
beginning, very similar tasks (and even similar solutions!) in spite of the difference 
in learners’s   age.   There is, however, a big difference: working with prospective 
teachers, the process is disclosed and explicitly linked to the theoretical framework 
and its schematic representation in Figure 7, in order to function as a model of 
effective classroom activity to be implemented in the teaching profession.  
 If one assumes the perspective of a teacher educator, it is evident that this 
increases the complexity of the design of laboratory sessions for prospective 
teachers compared to laboratory sessions for students. This complexity is 
consistent with the multidimensional feature of mathematical knowledge for 
teaching  (Ball et al., submitted). Actually different domains of knowledge are 
brought into play, such as: 
– the common content knowledge, i. e., the mathematical knowledge at stake in the 

material to be taught (evoked in Figure 20 by   the   triangle   “task   – artefact – 
mathematics  knowledge”);;   

– the knowledge of content and students, related to the prediction and 
interpretation  of  students’  processes  when  a  task  is  given  (evoked  in  Figure 20 
by the “cognitive” or  “learning”  triangle  “task  – artefact – situated  texts”);;   

http://nlvm.usu.edu/en/nav/index.html
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– the knowledge of content and teaching,  related  to  the  teacher’s  actions  aiming  at  
the  students’  construction of mathematical meaning (evoked in Figure 20 by the 
“teaching”  triangle  “task  – situated texts – mathematical  texts”);;   

– the specialised content knowledge (evoked in Figure 20 by the 
“epistemological”   triangle   “task   – mathematics knowledge – mathematical 
texts”).   
In each triangle a special function is played by the artefact, i.e., the 

mathematical machine introduced as tool for teacher education. 

 

Figure 20. The scheme of Figure 7 revisited. 

NOTES 

 
1  Research funded by MIUR (PRIN 2005019721): Meanings, conjectures, proofs: from basic research 

in mathematics education to curriculum (national coordinator: M. G. Bartolini Bussi). 
2  In the Italian context this is consistent with the indications of the Mathematics curriculum (see the 

part on Mathematical Laboratory at http://umi.dm.unibo.it/italiano/Didattica/ICME10.pdf). 
3  An utilization scheme (Rabardel, 1995) is an active structure into which past experiences are 

incorporated and organized, in such a way that it becomes a reference for interpreting new data. As 
such, a utilization scheme is a structure with a history, which changes as it is adapted to an 
expanding range of situations and is contingent upon the meanings attributed to the situations by the 
individual. This concept allows for the identification of the processes through which an activity is 
adapted to the diversity of the outside world, in accordance with the particular content to which the 
scheme is applied 

4 Bèguin and Rabardel (2000) define instrumentalization as:  
 
 

http://umi.dm.unibo.it/italiano/Didattica/ICME10.pdf
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“We  can  distinguish  several  levels  of  instrumentalization  in  the  attribution  of  functions  to  one  
or  more  of  the  artefact’s  properties.  At  the  first  level,  instrumentalization  is  local.  It  is  related  
to a particular action and to the specific circumstances under which that action occurs. The 
artefact’s   properties   are   given   a   function   temporarily.   The   artefact   is   momentarily  
instrumentalized.  At  the  second  level,  the  artefact’s  property  is  more  permanently linked to a 
function that the instrument can perform within a class of actions, objects of the activity, and 
situations. The instrumentalization is lasting if not permanent. At both of these levels, the 
artefact itself does not undergo any material transformations. It simply takes on new 
properties as far as the subject is concerned, acquired either momentarily or more 
permanently. At the third level, the artefact can be permanently modified in terms of its 
structure  so  as  to  perform  a  new  function”  (p.  183).  

In the same paper, Bèguin and Rabardel define instrumentation as follows: 

 “Utilization  schemes  have  both  a  private  and  a  social  dimension.  The  private  dimension  is  
specific to each individual. The social dimension, i.e., the fact that it is shared by many 
members of a social group, results from the fact that schemes develop during a process 
involving   individuals  who   are   not   isolated.  Other   users   as  well   as   the   artefact’s   designers  
contribute  to  the  elaboration  of  the  scheme”  (p.  182).   

5 The text refers  to  postulates  (post.),  definitions  (def.)  and  common  notions  (C.N.),  taken  from  Euclid’s  
Book One. 

6 The  pascaline   (called   “zero+1”)   is   a   small   (27   cm  x  16   cm)  plastic   tool,   produced   and   sold  by   the  
Italian  company  “Quercetti  intelligent  toys”  (www.quercetti.it).  

7 Two different instrumentalisation processes have been described in this section: the juxtaposition of 
abaci  to  represent  numbers  beyond  9999  and  the  design  of  the  “pasta”  abacus  as  a  variation  of  the  
grooved abacus. They are realized by different subjects (pupils vs. teachers). Several differences 
may be highlighted, with reference to different issues: e. g., 

– task: in the former the pupils are confronted by a mathematical task whilst in the latter the teachers are 
confronted by a mathematics education task, where all the domains of mathematics knowledge for 
teaching are at stake (Ball et al., submitted); 

– meaning: in the former, the place value as meaning is in progress, whilst in the latter it is taken for 
granted; 

– aim: in the former, the aim is to construct mathematical meaning, whilst in the latter the aim is to 
produce a tool for constructing mathematical meaning;  

– concreteness: in the former, the concrete realization of the artefact must be overcome to represent 
larger and larger numbers, whilst in the latter the concrete realization is in the foreground; 

– relationships: in the former the pupils are faced with a task, an ineffective artefact and a piece of 
mathematics knowledge, whilst in the latter the teacher are faced with a task, an artefact to be 
changed, a piece of mathematics knowledge and the pupils who are expected to use the new artefact. 

The last issue is related to the different institutional roles played by pupils (who are expected to learn) 
and teachers (who are expected to teach). It explains why processes and outcomes are expected to be 
different  when  even  the  “same”  task 

“Design  with  everyday  materials  an  arithmetical  machine  that  can  be  used  in  the  place  of  the  
one that has been  offered  you” 

is given to primary school pupils and to primary school teachers.  
8 We shall not consider, in this chapter, paper folding which is, however, a popular way to approach 

symmetry with young pupils. 
9 The fig. 12 shows a frame of the java simulation of the concrete linkage used by young students in the 

Figure 14 and in the Figure 15 (http://www.museo.unimo.it/theatrum/macchine/simj/m117.htm: drag 
the green point to explore). The machines of the MMLab are made of wood and brass. They have 
different sizes: the large ones ( about 70 cm x 50 cm) are used for large group explanations; the 

 
 

http://www.quercetti.it/
http://www.museo.unimo.it/theatrum/macchine/simj/m117.htm
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small ones (40 cm x 40 cm) are available in multiple copies for small group work. They can be 
bought or rented by schools (http://associazioni.monet.modena.it/macmatem/kit%20nuovi.pdf). 
Individual cardboard or plastic (e. g. geostrips with brass fasteners) models may be cut and 
assembled in the instrumentalization phase, although, for the instrumentation phase, they show 
limitations in functioning (they sag and lack holes for pens). 

10 Courtesy of Germana Bartoli. 
11 “Isometric   and   non-isometric transformations in the plane: a teaching project that makes use of 

mathematical  machines”  (Research  project  carried  out  by  M.  Maschietto  and  F.  Martignone). 
12 When linkages concerning less known transformations are into play (e. g., translation), the amount of 

situated texts in small group work is larger. In these cases the collective work of writing a 
mathematical  definition  under  the  teacher’s  guide  is  an  important  moment  of  social  construction. 
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