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MICHELE ARTIGUE

WHAT CAN WE LEARN FROM EDUCATIONAL
RESEARCH AT THE UNIVERSITY LEVEL?”

1. INTRODUCTION

For more than 20 years, educational research has dealt with mathematics
learning and teaching processes at the university level. It has tried to improve our
understanding of the difficuities encountered by students and the dysfunction of the
educational system; it has also tried to find ways to overcome these problems. What
can such research offer to an international study? This is the issue I will address in
this article, but first I would like to stress that it is not an easy question to answer,
for several reasons including at least the following: ‘

1. Educational research is far from being a unified field. This characteristic
was clearly shown in the recent ICMI study entitled “What is research in
mathematics education and what are its results?” (See Sierpinska and
Kilpatrick, 1996.) The diversity of existing paradigms certainly
contributes to the richness of the field but, at the same time, it makes the
use and synthesis of research findings more difficult. ~

Learning and teaching processes depend partly on the cultural and social

environments in which they develop. Up to a certain point, results
obtained are thus time- and space- dependent, their field of validity is
necessarily limited. However, these limits are not generally easy to
identify.

Finally, research-based knowledge is not easily transformed into
effective educational policies.

I will come back to this last point later on. Nevertheless, I am convinced that
existing research can greatly help us today, if we make its results accessible to a
large audience and make the necessary efforts to better link research and practice. 1
hope that this article will contribute to making this conviction not just a personal
one. Before continuing, I would like to point out that the diversity mentioned above
does not mean that general tendencies cannot be observed. At the theoretical level,
these are indicated, for instance, by the dominating influence of constructivist
approaches inspired by Piaget’s genetic epistemology, or by the recent move

U A shorter version of this paper, Artigue (1999}, was published in the Notices of the American
Mathematical Society.
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attempt to take more account of the social and cultural dimensions of learning and
teaching processes (sce Sierpinska and Lerman, 1996). But within these general
perspectives, researchers have developed a muitiplicity of local theoretical frames
and methodologies, which differently shape the way research questions are selected
anq expressed, and the ways they are worked on - thus affecting the kind of results
which can be obtained, and the ways they are described. At the cultural level, such
general tendencies are also observed. Strong regularities in students’ behaviour and
difficulties as well as in the teaching problems met by educational institutions, have
bCEI} observed. These, up to a point, apparently transcend the diversity of cultural
environments.

. In the following, after characterizing the beginnings of the research enterprise, I
vfflll try to overcome some of the above-mentioned difficulties presenting research
findings along two main dimensions of learning processes: qualitative changes,
reconstructions and breaches on the one hand, cognitive flexibility on the other
hand, These dimensions can to some degree, be considered ‘transversal’ with respect
to theoretical and cultural diversities as well as to mathematical domains. No doubt
this is a personal choice, induced by my own experience as a university teacher, as a
mathematician, and as a education researcher; it shapes the vision T give of research
findings, a vision which does not pretend to be objective or exhaustive.

2. FIRST RESEARCH RESULTS: SOME NEGATIVE REPORTS

The first research results obtained at university level can be considered negative
ones. Research began by investigating students’ knowledge in specific mathematical
areas, with particular emphasis on elementary analysis (or calculus in the Anglo-
Saxon culture), an area perceived as the main source of failure at the undergraduate
level. The results obtained gave statistical evidence of the limitations both of
traditional teaching practices and of teaching practices which, reflecting the
Bourbaki style, favoured formal and theoretical approaches. The structure and
content of the book, Advanced -Mathematical Thinking (Tall, 1991), gives clear
evidence of these facts, noting that:

s by the early eighties, Orton (1980), in his doctoral thesis, showed the
reasonable mastery English students had of what can be labelled as
‘mere algebraic calculus’: calculation of derivatives and primitives
(anti-derivatives), but the significant difficulty they had in
conceptualizing the limit processes underlying the notions of
derivative and integral;

* at about the same time, Tall and Vinner (1981), highlighted the
discrepancy between the formal definitions students were able to
quote and the criteria they used in order to check properties such as
functionality, continuity, derivability. This discrepancy led to the
introduction of the notions of concept definition and concept image
in order to analyze students’ conceptions;
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e very early, different authors documented students’ difficulties with
logical reasoning and proofs, with graphical representations, and
especially with connecting analytic and graphical work in flexible
ways. :

Schoenfeld (1985), also documented the fact that, faced with non-routine tasks,
students — even apparently bright students — were unable to efficiently use their
mathematical resources. _ o

Research also showed, quite early, that the spontaneous reactions of educational
systems to the above-mentioned difficulties were likely to induce vicious circles
such as the following. In order to guarantee an acceptable rate of success, an
increasingly important issue for political reasons, teachers tended to increase the gap
between what was taught and what was assessed. As the content of assessments is
considered by students to be what should be learnt, this situation had dramatic
effects on their beliefs about mathematics and mathematical activity. This, in turn,
did not help them to cope with the complexity of advanced mathematical thinking.

Fortunately, research results are far from being limited to such negative reports.
Thanks to an increasing use of qualitative methodologies allowing better
explorations of students’ thinking and the functioning of didactic institutions
(Schoenfeld, 1994), research developed and tested global and local cognitive
models. It also organized in coherent structures the many difficulties students
encounter with specific mathematical areas, or in the secondary/tertiary transition, It
led to research-based teaching designs (or engineering products) which,
implemented in experimental environments and progressively refined, were proved
to be effective. Without pretending to be exhaustive, let us give some examples,
classified according to the two main dimensions given above. (For more details, the
reader can refer to the different syntheses in Artigue, 1996, Dorier, 2000,
Schoenfeld, 1994, Tail, 1991 and 1996; to the special issues dedicated to advanced
mathematical thinking by the journal Educational Studies in Mathematics in 1995
edited by Dreyfus; by the journal Recherches en Didactique des Mathématiques in
1998 edited by Rogalski; to some of the diverse monographs published by the
Mathematical Association of America about calculus reform, innovative teaching
practices; and to research about specific undergraduate topics to be found in the
MAA Notes on Collegiate Mathematics Education.)

3. QUALITATIVE CHANGES, RECONSTRUCTIONS AND BREACHES IN
THE MATHEMATICAL DEVELOPMENT OF KNOWLEDGE AT UNIVERSITY
' LEVEL

One general and crosscutting finding in mathematics education research is the
fact that mathematical learning is a cognitive process that necessarily includes
‘discontinuities.” But, depending on the researcher this attention to discontinuities is
expressed in different ways. In order to reflect this diversity and the different
insights it allows, I will describe three different approaches: the first one, in terms of
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process/object duality, the second one in terms of epistemological obstacles, the
third one in terms of reconstructions of relationships to objects of knowledge.

3.1 Qualitative changes in the transition from processes to objects: APOS theory

As mentioned above, research at the university level is the source of theoretical
models. The case of APOS theory, initiated by Dubinsky (see Tall 1991) and
progressively refined (see Dubinsky and McDonald, this volume, pp. 275-282), is
typical. This theory, which is an adaptation of the Piagetian theory of reflective
abstraction, aims at modelling the mental constructions used in advanced
mathematical learning. It considers that “understanding a mathematical concept
beging with manipulating previously constructed mental or physical objects to form
actions; actions are then interiorized to form processes which are then encapsulated
to form objects. Objects can be de-encapsulated back to the processes from which
they were formed. Finally, actions, processes and objects can” be organized in
schemas” Asiala et al, 1996. Of course, this does not occur all at once and objects,
once constructed, can be engaged in new processes and so on. Researchers following
this theory use it in order to construct genetic decomposition of concepts taught at
university level (in calculus, abstract algebra, etc.) and design teaching processes
reflecting the genetic structures they have constructed and tested.

As with any model, the APOS model only gives a partial vision of cognitive
development in mathematics, but one cannot deny today that it put to the fore a
crucial qualitative discontinuity in the relationships students develop with respect to
mathematical concepts. This discontinuity is the transition from a process
conception to an object one, the complexity of its acquisition and the dramatic
effects of its underestimation by standard teaching practices.” Research related to
APOS theory also gives experimental evidence of the positive role which can be
played by programming activities in adequate languages (such as the language
ISETL, cf. Tall, 1991) in order to help students encapsulate processes as objects.

Breaches in the development of mathematical knowledge: Epistemological
obstacles. The theory of epistemological obstacles, firstly introduced by Bachelard
{1938) and imported into educational research by Brousseau (1997), proposes an
approach complementary to cognitive evolution, focussing on its necessary
breaches. The fundamental principle of this theory is that scientific knowledge is not
built in a continuous process but results from the rejection of previous forms of
knowledge: the so-called epistemological obstacles. Researchers following this
theory hypothesize that some learning difficulties, often the more resistant ones,
result from forms of knowledge which are coherent and have been for a time
effective iIn social and/or educational contexts. They also hypothesize that
epistemological obstacles have some kind of universality and thus can be traced in
the historical development of the corresponding concepts. At the university level,

2 Note that a very similar approach was developed independently by Sfard, with more emphasis on the
dialectic between the operational and structural dimensions of mathematical concepts in mathematical
activity (Sfard, 1991).
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such an approach has been fruitfully used in research concerning the concept of limit
(cf. Artigue 1998 and Tall 1991 for synthetic views). Researchers such as
Sierpinska, (1985), Cornu, (1991) and Schneider, (1991) provide us with historical
and experimental evidence of the existence of epistemological obstacles, mainly the
following:

¢ the everyday meaning of the word ‘limit’, which induces resistant
conceptions of the limit as a barrier or as the last term of a process, or
tends to restrict convergence to monotonic convergence;

e the overgeneralization of properties of finite processes to infinite
processes, following the continuity principle stated by Leibniz;

¢ the strength of a geometry of forms which prevents students from
clearly identifying the objects involved in the limit process and their
underlying topology. This makes it difficult for students to appreciate
the subtle interaction between the numerical and geometrical settings
in the limit process.

Let us give one example (taken from Artigue, 1998) of this last resistance, which
occurs even in advanced and bright students. In a research project about differential
and integral processes, advanced students were asked the following non-standard
question: “How can you explain the following: using the classical decomposition of
a sphere into small cylinders in order to find its volume and area, one obtains the

4
expected answer for the volume 5 AR ,but 7 R for the area instead 47zR* 7 It was

observed that, faced with this question, the great majority of advanced students
tested got stuck. And, even if they were able to make a correct calculaticn for the
area (which they were not always able to do) they remained unable to resolve the
conflict, '

As the students eventually said, because the pile of cylinders, geometrically,
tends towards the sphere, the magnitudes associated with the cylinders behave in the
same way and thus have as a limit the corresponding magnitude for the sphere. Such
a resistance may look strange but it appears more normal if we consider the effect
produced on mathematicians by the famous Schwarz counterexample showing that,
for a surface as simple as a cylinder, limits of areas of triangulations when the size
of the triangles tends towards 0, can take any value greater than or equal to the area
up to infinity, depending on the choices made in the triangulation process, an effect
nicely described by in Lebesgue, (1956). The historical and universal comsmitments
of the theory which leads to such results can be discussed and are presently

discussed (see, for instance, Radford, 1997). However, what cannot be negated is the

fact that the above-mentioned forms of knowledge constitute resistant difficulties for
today’s students; moreover, that mathematical learning necessarily implies partial
rejection of previous forms of knowledge, which is not easy for students.
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3.2 Reconstructions in the secondary/tertiary transition: The case of calculus

Qualitative changes in the relationships students develop with respect to
mathematical concepts can be approached in a less radical way: in terms of
necessary recomstructions. In this section, we illustrate corresponding research
findings, by focusing on reconstructions which have been proved to play a crucial
role in calculus at the secondary/tertiary transition, at least in the educational
situation which tends to predominate now where an intuitive and pragmatic
approach to calculus in the secondary curriculum, precedes the formal approach
introduced at university. Some of these reconstructions deal with mathematical
objects already familiar to students before the official teaching of calculus. Real
numbers are a typical example. They enter the secondary curriculum early as
algebraic objects with a dense order, with a geometrical representation as the real
line, and with decimal approximations that can be easily obtained with pocket
calculators. Nevertheless, many pieces of research show that, even upon entering
university, students’ conceptions remain fuzzy, incoherent, and poorly adapted to
the needs of the calculus world. For instance, the ordering of the real numbers is
recognized as a dense order. However, depending on the context, students can
reconcile this property with the existence of numbers just before or after a given
number (0.999... is thus often seen as the predecessor of 1). More than 40% of
students entering French universities consider that, if two numbers A and B are

L
closer than TV- for every positive N they are not necessarily equal, just infinitely

‘close. Relationships between irrational numbers and their decimal approximations
remain fuzzy, There is no doubt that reconstructions are necessary for understanding
‘calculus thinking modes’, Research shows that these are not easily induced by the
kind of intuitive and algebraic analysis which is the main focus of calculus
instruction at the high school level, and that the constructions of the real number
field introduced at the university level have little effect if students are not faced with
the incoherence of their conceptions and the resulting cognitive conflicts.

A second category of reconstructions results from the fact that only some facets
of a mathematical concept can be introduced at a first contact with it. The concept of
integral illustrates this case fairly well. In many countries the first contact with
integrals occurs at the upper secondary level via the notion of anti-derivative and a
pragmatic approach to the Fundamental Theorem of Calculus which allows the anti-
derivative to be connected with an intuitive notion of area. Only at university is a
theory of integration developed, first as the theory of Riemann integrals, then, at a

more advanced level, as the Lebesgue theory. All of this requires successive-

reconstructions of the relationships that students have with the integral concept.
Much research has been devoted to this theme with great consistency in the results
obtained all over the world, documenting the limitations of standard teaching
strategies. These results clearly show that reconstruction cannot result from a mere
presentation of the theory of Riemann integrals. Through standard teaching

practices, students become reasonably successful on standard tasks, but no more. For |

example, if students are asked in modelling tasks to decide by themselves whether &
problem requires an integral process for being solved, they get completely stuck or
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base their answers on the linguistic hints, if any, that they have learnt to notice in the
standard versions of such tasks. Most students think that the safest way to deal
successfully with this domain is not to try to understand, but to just function
mechanically, I would like to add that we don’t have to see this as a sort of cognitive
fate. We merely observe our students’ economic ways of adaptation to inadequate
educational practices.

Research, as was stressed above, is not limited to such negative reports. I would
like now to present a situation created by Legrand (1997), in the context of a
research project involving mathematicians and physicists with the goal of making
first-year university students really feel by themselves the necessity of the integral
concept. The situation is based on the following apparently very simple problem (the
most effective situations found by researchers are very often apparently simple
ones). A linear bar of M; and a point mass M; are located as shown. Students are
asked to calculate the intensity of the attraction between the two masses.

M|=18kg M2=2kg

€“————— tm ——>€— 3Iim —>

Figure 1. Attraction between a bar and point mass

This situation has been shown effective in various experiments in different
contexts. Why is it effective? To answer this question, we need a brief didactic
analysis, When asked this question without any linguistic hint, first-year students
don’t recognize it as an integral problem. But the first important point is that they
are not stuck because they can rely on a strategy often used in physics: concentrating
the mass of the bar at its centre of gravity and applying the familiar attraction law
between two point masses, In experiments, this strategy has always predominated.
But, in a group of reasonable size, as is easily the case at university level, there are
always students who have some doubts. “Is the gravity principle valid in that
particular case?” A second strength of the situation results from the fact that one can
test the validity of the gravity principle, simply by applying it in another way.
Students generally suggest that the bar be cut into two halves and the gravity
principle be applied to each half. Of course, this does not give the same result and

.
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the gravity principle is shown to be invalid in that particular case. But this negative
answer is also a positive one because it makes salient an essential fact: the
contribution of a piece of the bar to the attraction force depends on its distance to the
mass x. This allows students to propose upper and lower bounds for the required
intensity, Moreover, the technique which was the basis for the invalidation process
can be then used in a progressive refinement process, which leads students to the
conviction that the force, whose existence is physically attested, can be
approximated as accurately as desired. What underlies this is simply the
fundamental integral process. In the didactic design elaborated by Legrand, this is
just the starting point. Students have then to work on situations that, in different
contexts, require the same solution process. Then they have to look for and discuss
the analogies between the solutions in order to make the integral process an explicit
tool (in the sense of the distinction between the tool and object dimensions of
mathematical concepts introduced by Douady, 1987). Only at that point does the
university teacher connect this with the theory of Riemann integrals and develop the
notion of integral as a mathemat1ca1 object that will be then reused in more complex
situations.

Before leaving this point, let me stress the following: efficiency here is not only
linked to the characteristics of the problem which [ have just described, it strongly
depends on the kind of scenario developed in order to organize students’ encounter
with this new facet of the integral concept. In a crucial way, this scenario plays on
the social character of learning processes. It is through group discussion that the
initial strategy is proved to be erroneous. It is the collective game which allows a
solution to be found in a reasonable amount of time and which fosters regularities in
the dynamic of the situation which could not be ensured if students were faced with
the same problem individually or in very small groups. (A similar point is made by
Stigler and Hiebert, 1999, p. 164.) No doubt also that the effect would be different if
the teacher simply presented this particular example during a lecture.

This example might appear idyllic. But I must confess that educaticnal research
does not so easily provide us with effective means to deal with all necessary
reconstructions. For instance, differences are evident if one considers the concept of
limit, central to calculus. With this particular example, we come to a third category
of reconstructions, reconstructions necessary because, as was already acknowledged
at the beginning of the last century by the famous mathematician Poincaré (1904},
concepts cannot be necessarily taught from the start in their definitive form. At high

school level, in most countries today, the impossibility of entering the field of |

analysis, formally, has been acknowledged. Teaching relies both on a dynamic
conception of the limit, based on graphical and numerical explorations, and on
techniques of an algebraic nature (Artigue, 1996). These allow students to ‘solve
simple but interesting problems of variation and optimization. The transition
towards more formal approaches, which takes place at university, represents a
tremendous gap both conceptually and technically.

From a conceptual point of view, one crucial point is the following: what is at
play through the formalization of the limit concept is, above all, an answer to
foundational, unification and generalization needs (see Dorier, 1995, Robert, 1998,
or Robert and Speer, this volume, pp. 283-301). It is not easy to make young
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students sensitive to such concerns because those concerns are not really part of
their mathematical culture. From a technical point of view, the following is
essential: in the algebraic analysis of the first contact, technical work does not really
break with ordinary algebraic work. This is no longer the case when one enters the
field of formal analysis. For example, students must reconstruct the meaning of
equality and understand that it doesn’t necessarily result, as in algebra, from
successive equivalencies, but from e-proximity for every positive €. Another point is
that inequalities become more. frequent than equalities, generating a strong increase
in technical complexity, especially so as associated modes of reasoning most often
rely on sufficient conditions. These new modes require a carefully controlled loss of
information based on a good awareness of the respective orders of magnitude of the
different parts of the expressions students have to deal with. In brief, students have a
completely new technical world to identify and learn to master. This is far from
being easy and is necessarily a long-term process.

3.3 Some concluding remarks: From calculus to linear algebra

Up to now, I have focussed on qualitative changes and more or less radical
reconstructions. As stressed above, research shows that teaching practices
underestimate both the conceptual and technical costs of these changes. Teaching
tends to leave the responsibility for most of the corresponding reorganization to
students, with dramatic effects for the majority of these, especially at the
secondary/tertiary transition. Research also shows that alternative strategies can be
developed fruitfully. Examples have been given for calculus, a domain extensively
explored by research. But the growing body of research in linear algebra attests to
the existence of similar phenomena (see Dorier and Sierpinska, this volume, pp.
253-272). For instance, the concept of abstract vector space in its axiomatic form,
from an epistemological point of view, has been proved to share some common
characteristics with the formal concept of limit. When it entered the mathematical
scene, its value as a generalizing, unifying, and formalizing concept was stronger
than its potential for solving new problems and it was not easily accepted by
mathematicians. The same situation occurs with our students who do not need this
abstract construction to solve most problems in a first linear algebra course. In
France, some researchers have developed specific didactic strategies which aim at
making it possible for students to do the necessary reflective and cultural
mathematical work (see Dorier et al, 2000). In other countries, these difficulties tend
to be removed by reducing topics in first linear algebra courses to those in spaces
isomorphic to R" and by emphasizing matrix calculus and applications Carlson et al
(1993). Recent Canadian research (Hillel and Sierpinska, 1994) suggests that this
choice is not so benign as it might appear at first sight. Living in a linear algebra
world built on the structure of R* makes it difficult to differentiate vectors and
transformations from their canonical representations and can induce further
obstacles.
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3.4 Cognitive Flexibility in Learning and Teaching Processes

The result just mentioned above is linked with a more general issue, that of
relationships between mathematical concepts and their semiotic representations, an
issue to which educational research pays increasing attention. This fact does not
seem independent of the global evolution of theoretical frames mentioned at the
beginning of this article, because socio-cultural and anthropological approaches are
especially sensitive to the role played by the material and symbolic tools of
mathematical activity in learning processes. Depending on the theoretical
perspective, this attention is expressed in different ways, but the fundamental point
is that it breaks with a common vision of instrumental and semiotic competencies as
a by-product of conceptualization and hypothesizes strong dialectic relationships in
their mutual development. This is of particular importance, especially if one has in
mind the current technological evolution of the instruments of mathematical activity,
More generally, mathematical learning can no longer be seen, as is often the case,
only as a regular ascension towards higher levels of abstraction and formalization,
Connections between mathematical fields of experience, points of view, settings,
and semiotic registers are a crucial part. With such considerations in mind, we enter
a wider domain that could be labelled the domain of cognitive flexibility, which is
increasingly investigated by research (see, for instance, Dyeyfus and Eisenberg,’
1996). :

I will use some examples taken from recent research in linear algebra in order to
illustrate this point. As stressed by Dorier (2000), historically linear algebra helped
to unify different pre-existing mathematical settings: geometry, linear systems in
finite and infinite dimensions and determinants, differential equations, and
functional analysis. This unifying role and power is an essential epistemological
value of linear algebra that has to be understood and used by students. But this
canmot be achieved without the development of complex commections among
reasoning modes, points of view, languages, and systems of symbolic
representations. Once more, research helps our understanding of the complexity of
the necessary cognitive constructions and, at the same time, shows the insensitivity
of the educational system to this complexity. In Dorier (2000), for instance, on the
one hand, Hillel points out the necessary interaction in linear algebra between three
different levels of language and representations: those of the general theory, of
geometry, and of R". On the other hand, Sierpinska et al. show the necessary
interaction between three different reasoning modes, respectively labelled as
synthetic and geometric, analytic and arithmetic, analytic and structural.® Both show
the inadequacy of the different teaching practices documented, from lectures to
tutorials, Alves Dias (1998), in her recent doctoral thesis, analyses the relationships
between two fundamental points of view in linear algebra: the paramefric and

% Inthe synthetic mode, mathematical objects are, in some way, directly given to the mind, which tries to
grasp and describe them. In the analytic mode, they are given indirectly: built through definitions and
properties of their elements. This analytic mode is divided by researchers into two different sub-modes:
the analytic-arithmetic where objects are given by a formula which makes it possible to calculate them,
and the analytic-structural where objects are defined by a set of properties.
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Cartesian points of view.* She clearly shows that, even if the conversion between
parametric and Cartesian representations of vector subspaces is, a priori, easily
achieved thanks to ordinary techniques for solving systems of linear equations, when
dealing with vector spaces of finite dimensions, a flexible connection between these
two points of view is far from being mastered by advanced French and Brazilian
students. Mathematical symbols such as matrices can foster errors in the use of those
formal representations because students operate on the formal symbols without
checking to see if the operations they perform are meaningful in terms of the objects
the symbols represent. This often leads to absurd results which are not recognised by
students because they do not interpret or check their findings through geometrical or
dimensional arguments. The detailed analysis of textbooks Alves Dias carried out,
shows that they don’t pay attention to these questions or develop theoretical
arguments, for instance in terms of duality, which remain too far away from the
technical level to make students able to control the connection. .
These are examples in linear algebra, As documented by research, mutatis
mutandis, there are similar examples in calculus. In that more extensively explored
“wrea, research also provides experimental evidence that computer technologies, if
properly used (which is not so easy) can play a crucial role in fostering flexible
connections among semiotic representations. For instance, among graphical,
numerical, and symbolic representations of functions, and help graphical
representations to become effective tools of the mathematical work (see Tall, 1991
and Dubinsky and Harel, 1992). Research also shows that the effective use of
computer technologies requires the development of specific mathematical
knowledge, a requirement which is not easily accepted by an educational institution

" whose values have been traditionally defined with respect to paper and pencil

environments.

~ 4. POTENTIAL AND LIMITS OF RESEARCH FOR ACTION ON THE
EDUCATIONAL SYSTEM

- As we have tried to show in this article, research carried out at the university
level helps us better understand the learning difficulties our students have to face,
the surprising resistance of some, and the limitations and dysfunction of some of our
teaching practices. Moreover, in various cases, research has led to the production of
teachihg designs that have been proved to be effective, at least in experimental
environments. But we must also recognize that research does not give us a general
way toeasily improve the learning and teaching processes. Some reasons can be
found in the current state of research: up to now, efforts have been concentrated on a
few domains taught at university level. Also, the training of future mathematicians at
the expense of the great diversity of students taking university mathematics courses,
has more or less implicitly been assumed. Research remains thus very partial due

A parametric point of view is adopted with a vector subspace for instance if the subspace is
characterized by some set of generators. A Cartesian point of view is to characterize a subspace as the
solutions of a linear system or as the null space of a linear operator. .
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both to the content it explores and to its vision of the expected form and content of
knowledge. In my opinion, the way the issue of computer technologies has been
generally addressed evidences this fact. It mainly focuses on the ways computer
technologies can support conceptualization and the cognitive flexibility recognized
as an essential component of this conceptualization. It does not give the same
attention to what is really a professional mathematical activity assisted by computer
technologies, and the specific and non-specific mathematical needs, depending on
professional specialty, required to become an efficient and critical user and how t.he
corresponding knowledge can be constructed in ordinary or service mathematics
courses. Nevertheless, this is also a real challenge we must face today, taking into
account the fact that, at university, our main concern is no longer the development of
some kind of general mathematical culture.

Other reasons such as the following seem more fundamental: it is rare that
research allows us to think that through minimal and cheap adaptations we could
obtain substantial gains. On the contrary, most research-based designs require more
engagement and expertise from teachers, and significant changes in practices (sce
for instance Dubinsky, Mathews and Reynolds, 1997 as regards collaborative
learning). One essential reason is this, What has to be reorganized is not only the
content of teaching (it is not enough to write or adopt new textbooks}, but more
global issues such as the forms of students’ work, the modes of interaction between
teachers and students, and the forms and contents of assessment. This is not easy to
achieve and is not just a matter of personal good will. '

Another crucial point is the complexity of the systems where learning and
teaching take place. Because of this complexity, the knowledge that we can infer
from educational research is necessarily very partial. The models we can elaborate
are necessarily simplistic ones. We can learn a lot even from simplistic models but
we cannot expect that they will give us the means to really control didactic systems.
So we must be realistic in our expectations and careful about generalizations. This
does not mean, in my opinion, that the world of research and the world of practice
must live and develop separately. Far from it. But it does mean that finding ways of
making research-based knowledge useful outside the communities and experimental
settings where it develops cannot be left as the sole responsibility of researchers. It
is our common task.
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ALAN H. SCHOENFELD

PURPOSES AND METHODS OF RESEARCH IN
MATHEMATICS EDUCATION!

Bertrand Russell has defined mathematics as the science in which we never know what
we are talking about or whether what we are saying is true. Mathematics has been
shown (o apply widely in many other scientific fields, Hence, most other scientists do
not know what they are talking about or whether what they are saying is true.

Joel Cohen, On the nature of mathematical proofs
There are no proofs in mathematics education.

Henry Pollak

1. INTRODUCTION

The first qﬁotation above is humorous, the second serious. Both, however, serve
to highlight some of the miajor differences between mathematics and mathematics
education ~ differences that must be understood if one is to understand the nature of
methods and results in mathematics education. _ '

The Cohen quotation does point to some serious aspects of mathematics. In
describing various geometries, for example, we start with undefined terms, Then,
following the rules of logic, we prove that if certain things are true, other results
must follow. On the one hand, the terms are undefined — i.e,, “we never know what
we’ are talking about.” On the other hand, the results are definitive. As Gertrude
Stein might have said, a proof is a proof is a proof.

Other disciplines work in other ways. Pollak’s statement was not meant as a
dismissal of mathematics education, but as a pointer to the fact that the nature of
evidence and argument in mathematics education is quite unlike the nature of
evidence and argument in mathematics. Indeed, the kinds of questions one can ask
(and expect to be able to answer) in educational research are not the kinds of
questions that mathematicians might expect. Beyond that, mathematicians and
education researchers tend to have different views of the purposes and goals of
research in mathematics education.

This paper begins with an attempt to lay out some of the relevant perspectives,
and to provide background regarding the nature of inquiry within mathematics

La closely related paper (Schognfeld, 2000a) was published in the Notices of the American Mathematical
Society,
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